Evaluation 3

- **1.** Given two points A(-2, 1) and B(4, -3), determine
 - a) the distance between A and B. 452
 - b) the coordinates of point M, mid-point of segment AB. M(1, -1)
 - the coordinates of point P that divides segment AB in a ratio of 2:1 from A. $P(z, \frac{-5}{3})$
 - d) the slope of the line AB. $\frac{-2}{3}$
 - e) the equation of the line AB. $y = -\frac{2}{3}x \frac{1}{3}$
- 2. What kind of triangle is ABC with vertices A(1, 2), B(2, 4) and C(3, 1)? Justify your answer.

 $\overline{mAB} = \sqrt{5}$; $\overline{mAC} = \sqrt{5}$; $\overline{mBC} = \sqrt{10} \ (\overline{mBC})^2 = (\overline{mAB})^2 + (\overline{mAC})^2$. $\triangle ABC$ is an isosceles right triangle.

- **3.** Using the point A(3, 2),
 - a) draw the line l_1 passing through A with a slope of $\frac{2}{3}$.
 - b) draw the line l_2 passing through A with a slope of $-\frac{5}{2}$.
 - c) draw the line l_3 passing through A with a slope of zero.
 - d) draw the line l_4 passing through A with an undefined slope.

4. Draw the following lines in the Cartesian plane on the right, and complete the table below.

$$l_1$$
: $y = \frac{3}{5}x + 3$

$$l_2$$
: $y = \frac{-3}{4}x + 2$

$$l_3$$
: $x = 5$

$$l_4$$
: $y = -2$

0.5	Slope	x-intercept	y-intercept
l_1	<u>3</u> 5	-5	3
l_2	<u>-3</u>	8/3	2
$\overline{l_3}$	does not exist	5	does not exist
$\overline{l_4}$	0	does not exist	-2

- **5.** The equation of a line *l* is $y = \frac{2}{3}x + 4$. Determine
 - a) the α -intercept ___6

- b) the y-intercept.
- 4

- **6.** Find the equation of
 - a) the line passing through A and C. y = -x + 6
 - b) the line passing through B and parallel to line AC. v = -x + 3

- c) the line passing through B and perpendicular to the line AC. y = x + 1
- d) the vertical line passing through C. x = 5
- e) the horizontal line passing through C. y = 1
- **7.** Find the equation of the line passing through A(6, 2) and B(9, 4).

$$y=\frac{2}{3}x-2$$

- **3**. Given the line $l: y = \frac{3}{4}x + 3$ and the point A(1, 2).
 - a) Find the equation of the line l_1 passing through A and parallel to l_2 . $y = \frac{3}{4}x + \frac{5}{4}$
 - b) Find the equation of the line l_2 passing through A and perpendicular to l.

9. The lines l_1 and l_2 on the right are parallel. The equation of line l_1 is: $y = \frac{1}{3}x + 15$.

Find the y-intercept of line l_2 if it passes through the point A(15, 10).

10. Consider the points A(3, 4), B(-1, 2) and C(8, -1). Calculate the distance from point A to line BC.

BC:
$$y = -\frac{x}{3} + \frac{5}{3}$$
; $d(A; BC) = \frac{10}{\sqrt{10}} = \sqrt{10} \approx 3.16 \text{ u}$

11. Calculate the area of the triangle ABC on the right.

$$AB: y = 2x + 4; B(0,4);$$

$$m\overline{AB} = \overline{320}$$
; $m\overline{AC} = \overline{320}$

Area of triangle ABC = $160 u^2$

12. Consider the figure on the right. Calculate the distance between A and B. Slope of BC: $-\frac{4}{3}$; slope of AD = $\frac{3}{4}$

Equation of the line AD: $y = \frac{3}{4}x + 6$

x-intercept of the line AD: -8; d(A, B) = 14

13. Consider the rectangle on the right. Find the area of this rectanlge to the nearest square unit.

 $\overline{MAB} = \sqrt{1664}$; AD: y = -5x + 12 $D\left(\frac{12}{5},0\right); m\overline{AD} = \frac{\sqrt{3744}}{5}; Area = 499 u^2$

14. Consider the parallelogram ABCD and the right trapezoid CDEF represented on the right. Determine the x-coordinate of point F.

 $a_{\overline{AB}} = \frac{1}{2}$; $a_{\overline{CF}} = -2$

CF: y = -2x + 33; x-coordinate of point F: 16.5

15. The segments AB and CD on the right are perpendicular. Calculate the area of triangle ABD.

CD: $y = \frac{3}{2}x - 6$; D(4, 0); d(B, D) = 8 u

Area of triangle ABD = $32 u^2$

Determine the length of median BM.

$$A(5, 6); AC: y = -\frac{5}{2}x + \frac{37}{2}; \quad C(7,4; 0); \quad M(6,2; 3)$$

B(0, 4); mBM = 6.28 u

