- **5.** Given the end-points A(2, 1) and B(6, 9) of segment AB. The point P divides segment AB in the ratio 3:1 from A.
 - a) Determine the ratio in which point P divides segment AB from B. ______1:3
 - b) Determine the coordinates of point P in two ways:
 - 1 from A $x_p = 2 + \frac{3}{4}(4) = 5$; $y_p = 1 + \frac{3}{4}(8) = 7$. P(5, 7)
 - 7 from B. $x_p = 6 + \frac{1}{4}(-4) = 5$; $y_p = 9 + \frac{1}{4}(-8) = 7$. P(5, 7)
- **6.** In each of the following cases, determine the coordinates of point P which divides segment AB in the given ratio from A.
 - a) A(-3, 1) and B(5, 3); ratio 3:1. $P(3, \frac{5}{2})$ b) A(14, 4) and B(2, 1); ratio 1:2. P(10, 3)
- 7. In each of the following cases, find the coordinates of point P if it is located

 - b) at $\frac{3}{8}$ of the way on segment AB from B, given A(-12, -17) and B(-4, -1); $\underline{P(-9, -11)}$
- \blacksquare Given A(3, 5), B(1, 3) and C(5, 1) the vertices of a triangle ABC.
 - a) Determine the coordinates of the points M, N and P that are the mid-points of side BC, AC and AB respectively.

 M(3, 2); N(4, 3); P(2, 4)

- b) Draw the medians AM, BN and CP and graphically determine the coordinates of point G, the triangle's centre of gravity. <u>G(3, 3)</u>
- c) Verify the following property: "The centre of gravity divides each median in the ratio 2:1 from each vertex".