Distance between two points

AGTIVITY 1 Distance between two points

Consider the following right triangle with vertices A(1, 1), B(4, 5) and C(4, 1). Find a procedure for calculating the distance between A and B and calculate that distance.

- 2. Calculate $m\overline{AC}$. 1. Calculate mBC.
- 3. Deduce mAB using the Pythagorean Theorem.

$$m\overline{BC} = 4$$
; $m\overline{AC} = 3 \Rightarrow m\overline{AB} = 5$

DISTANCE BETWEEN TWO POINTS

The distance between two points $A(x_A, y_A)$ and $B(x_B, y_B)$, noted d(A, B), is given by the formula:

$$d(A, B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

- A distance is always positive or zero: $d(A, B) \ge 0$.
- Given two points A and B, we have: d(A, B) = d(B, A).

Ex.: The distance between A(-2, 1) and B(1, 3) is:

$$d(A, B) = \sqrt{(1+2)^2 + (3-1)^2}$$

$$= \sqrt{9+4}$$

$$= \sqrt{13}.$$

6

Ç

- Calculate the distance between the following points:
- b) (-1, 2) and (1, 2) _____
- c) (1,-2) and (2,5) $\sqrt{50} = 5\sqrt{2}$ d) (-1,-3) and (2,3) $\sqrt{45} = 3\sqrt{5}$
- f) (-3, -1) and (2, -3)
- What distance separates the following points?

 - a) A and B $\sqrt{13}$ b) B and C $\sqrt{8} = 2\sqrt{2}$
 - c) C and D 4 d) D and E 3

64

We have: A(2, 3), B(-1, 1) and C(3, -1);
$$d(A, B) = \sqrt{13}$$

$$d(B, C) = \sqrt{20}$$
 and $d(A, C) = \sqrt{17}$.

Perimeter of
$$\triangle ABC = \sqrt{20} + \sqrt{13} + \sqrt{17} \approx 12.20 \text{ u}$$

4. a) Given a random point M(x, y) of the Cartesian plane. Show that $d(0, M) = \sqrt{x^2 + y^2}$.

$$d(0, M) = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$$

b) Given A(-2, 3), B(1, -2) and C(-3, 4). Calculate

1.
$$d(0, A)$$
. $\sqrt{13}$ 2. $d(0, B)$. $\sqrt{5}$ 3. $d(0, C)$. 5

Given A(3, 5), B(-4, 4) and C(5, 1), the vertices of triangle ABC on the right, and H(2, 2) the foot of the altitude to side BC, calculate the area of triangle ABC.

$$\overrightarrow{mBC} = \sqrt{90} = 3\sqrt{10}$$
, $\overrightarrow{mAH} = \sqrt{10}$. Area \triangle ABC = 15 u^2

- **6** Given three points in the Cartesian plane A(-4, 1), B(1, 6) and C(1, 1).
 - a) Show that triangle ABC is an isosceles right triangle.

$$d(A, B) = m\overline{AB} = \sqrt{50}$$
, $d(A, C) = m\overline{AC} = 5$; $d(B, C) = m\overline{BC} = 5$

We have:
$$(m\overline{AB})^2 = (m\overline{AC})^2 + (m\overline{BC})^2$$
 and $m\overline{AC} = m\overline{BC}$.

We deduce that $\triangle ABC$ is an isosceles right triangle with main vertex C.

- b) What is the area of triangle ABC? 12.5 u²
- **7.** Show that the points A(-2, 2), B(5, -5) and C(4, 2) are located on a circle with centre $\omega(1, -2)$. What is the radius of this circle?

It must be shown that $d(\omega, A) = d(\omega, B) = d(\omega, C)$.

 $d(\omega, A) = 5$; $d(\omega, B) = 5$; $d(\omega, C) = 5$. The circle has a radius of 5 units.