ANSWERES

What Did the Baby Porcupine Say When It Backed Into a Cactus?

Determine which of the relations below are functions. Find the number of each relation that is a function at the bottom of the page and cross out the letter below it. When you finish, the answer to the title question will remain.

Function (1) {(-2, 7), (-1, 5), (0, 3), (1, 1), (2, 1)}

Function 2 {(-7, 20), (3, 5), (0, 5), (-2, 0), (6, -4), (-6, -9), (4, 4)}

Nota Function 3 {(4, 8), (-3, -2), (9, 6) (2, -1), (-4, -5), (2, 7), (-8, 0)}

4	X	У
-	0	-19
_	1	-12
tunction	2	-4
	3	3
	4	13
	5	27

X	у
-5	8
-3	8
-1	-2
1	-2
3	11
5	23
	-5 -3 -1 1

6	X	у
	-2	-7
, (-2	5
+	0	-16
1	2	0
tion	2	6

OBJECTIVE 1-a: To determine whether or not a relation is a function.

ALGEBRA WITH PIZZAZZI
© Creative Publications

175

ANS: Hi Ma.

FUNCTIONS **VERTICAL LINE TEST**

If an equation represents a function, there is one and only one y value for each distinct x.

Look at each of the following graphs. Which represent functions.

3).

4).

6).

Explain why the vertical line tests works.

The line is a visual way to determine if come the graph is a function or not. If the vertical line intersects at only one point of the graph, the graph is a function. This indicates that each independent Variable (X) in thedata set matches up to a unique AM dependant variable(y). You cannot have two values (2 different ys) for outproponers, one independent variable (x). than one point, the graph is not o

ALGEBRA

Name:	V

Relations and Functions

Period: _	
-----------	--

Is each relation a function? Use a mapping diagram. Explain your answer.

Is it a function?

Is it a function?

Explain: The X coordinate H has a relation with of 2 different y coordinates por (6 and 7). It is not a sunction.

Identify which of the following graphs are NOT functions.

Explain: The X coordinates of each ordered pair is paired up with a brigger y coordinate.

Answer(s): __

. (there may be more than one!)

3. [A]

[B]

[C]

[D]

Is each relation a function? Use the vertical line test. Explain your answer.

 $\{(2, 5), (-3, 5), (0, 5), (3, 5)\}$

 $\{(-1, -9), (1, 3), (-1, 9), (6, 6)\}$ 5.

Introductions to Functions Worksheet

5) For the following relation to be a function, X cannot be what values? { (12, 13), (-11, 22), (33, 101), (X,22) }	, 8
nnot be 12, -11, or 33	
o) For the following relation to be a function, X can not be what values? { (12,14), (13,5), (-2,7), (X,13) }	·
X cannot be 2 3 5 - 2 7) For the following relation to be a function, X can not be what values? { (13,14), (12,5), (16,7), (X,13) }	
X cannot be 13, 12, or 16.	
Alex states that the relation below is not a function. Lillian says that it is a function. Whereasoning.	o is correct? Explain your
Relation { (13,14), (12,5), (16,7), (13, 14), (-2, 33), (13, 14 } Explanation:	*
Lilian is correct. The relation i	s a function
is still 1 x coordinate with the	ted 3 times same y-coordina